
fastapi-icontract Documentation
Release 0.0.4

Marko Ristin

Jan 28, 2022

CONTENTS:

1 Introduction 1

2 Pre-conditions 3

3 Post-conditions 5

4 Async 7

5 Transactions 9

6 Documenting Contracts in OpenAPI 11

7 Visualizing Contracts in Swagger UI 13

8 API 15

9 Example 19

10 Contributing 21

11 Changelog 23

12 Indices and tables 25

Index 27

i

ii

CHAPTER

ONE

INTRODUCTION

FastAPI-icontract is a FastAPI extension for design-by-contract which leverages icontract to allow you to specify and
enforce code contracts in your FastAPI endpoints.

Depending on how you set it up, FastAPI-icontract will:

• automatically enforce the contracts during testing or in production,

• automatically add the contracts to your OpenAPI specification, and

• render the Swagger UI with a specialized contracts plugin for nicer visualization.

1.1 Benefits of Adding Contracts to Your API

Enforcing code contracts in your FastAPI development opens up new venues for approaches to more systematic design
at the API level:

• Contracts are an important part of the specification.

Unlike human language, contracts written in code are unambiguous.

• Contracts are automatically verifiable.

Your clients can rest assured that you actually run them. FastAPI-icontract will specify precisely which contracts
are run in production and which were only verified during testing.

• Contracts provide deeper testing.

If you have a mesh of microservices that you need to test in conjunction, turn on all the contracts and test against
your client’s data instead of your own limited unit test data.

• Contracts specified in code allow for automatic client-side verification.

Thus you can signal formally to the client up-front what you expect (using pre-conditions), while the client can
verify what to expect back from you (using post-conditions).

• Contracts are not just for input validation.

Though you can use contracts for input validation as well, FastAPI already allows you to specify how you want
your input verified. Contracts, on the other hand, really shine when you want to specify relations between the
endpoints.

• Contracts allow for automatic test generation.

Tools for property-based testing such as Schemathesis can automatically generate test data and verify that your
API works as expected. Post-conditions are an easy way to define your properties to be tested.

There is an ongoing discussion with the authors of the Schemathesis how to integrate it with tools which generate
data based on contracts such as icontract-hypothesis.

1

https://fastapi.tiangolo.com/
https://github.com/Parquery/icontract
https://fastapi.tiangolo.com/tutorial/first-steps/
https://cacm.acm.org/blogs/blog-cacm/227928-why-not-program-right/fulltext
https://fastapi.tiangolo.com/tutorial/query-params-str-validations/
https://github.com/schemathesis/schemathesis
https://github.com/mristin/icontract-hypothesis

fastapi-icontract Documentation, Release 0.0.4

• Contracts open up a wider ecosystem for analysis.

When you decorate the endpoints with contracts, you can immediately use analysis tools such as CrossHair to
analyze your code and find bugs.

2 Chapter 1. Introduction

https://github.com/pschanely/CrossHair

CHAPTER

TWO

PRE-CONDITIONS

The pre-conditions are the conditions which must hold prior to the execution of the endpoint.

You specify the pre-conditions using the decorator require.

Here is a snippet demonstrating how to specify a pre-condition (see the full example):

from fastapi_icontract import require

@app.get("/books_in_category", response_model=List[Book])
@require(

has_category,
status_code=404,
description="The category must exist."

)
async def books_in_category(category: str) -> Any:

...

3

https://en.wikipedia.org/wiki/Precondition
https://en.wikipedia.org/wiki/Precondition

fastapi-icontract Documentation, Release 0.0.4

4 Chapter 2. Pre-conditions

CHAPTER

THREE

POST-CONDITIONS

The post-conditions are the conditions which must hold after the execution of the endpoint.

You specify the post-conditions using the decorator ensure.

Post-conditions usually involve comparing the state before and after the request to an endpoint. The state after the
request is directly available to the post-condition.

3.1 Snapshots

However, you need to specifically instruct fastapi-icontract which state needs to be capture before the request. This is
done by using snapshots with the decorator snapshot.

3.2 Examples

Here is a simple snippet that involves only a post-condition (see the full example):

import asyncstdlib as a

from fastapi_icontract import ensure

@app.get("/books_in_category", response_model=List[Book])
@ensure(

lambda result: a.all(a.await_each(has_author(book.author) for book in result)),
description="One ore more authors of the resulting books do not exist."

)
async def books_in_category(category: str) -> Any:

"""Retrieve the books of the given category from the database."""
...

The following snippet is a rather sophisticated one that involves both the post-condition and a snapshot (see the full
example):

import asynstdlib as a
from fastapi_icontract import snapshot, ensure

@app.post("/upsert_book")
@snapshot(lambda book: has_book(book.identifier), name="has_book")
@snapshot(lambda: book_count(), name="book_count")
@ensure(lambda book: has_book(book.identifier))
@ensure(

(continues on next page)

5

https://en.wikipedia.org/wiki/Postcondition
https://en.wikipedia.org/wiki/Postcondition

fastapi-icontract Documentation, Release 0.0.4

(continued from previous page)

lambda book, OLD: a.apply(
lambda a_book_count: (

OLD.book_count + 1 == a_book_count if not OLD.has_book
else OLD.book_count == a_book_count),

book_count()))
async def add_book(book: Book) -> None:

...

6 Chapter 3. Post-conditions

CHAPTER

FOUR

ASYNC

Fastapi-icontract works out-of-the-box with the async functions in conditions and snapshot captures. If a condition or
a capture returns a coroutine, the coroutine is awaited first and then tested for truthiness or captured, respectively.

However, Python 3 does not allow async lambdas (see this Python issue), so you need to use a third-party library such
as asyncstdlib.

For example, note how we transform each book in the result in the following post-condition and verify that the author
of the book exists in the system using an async function has_author:

@app.get("/books_in_category", response_model=List[Book])
@fastapi_icontract.require(

has_category,
status_code=404,
description="The category must exist."

)
@fastapi_icontract.ensure(

lambda result: a.all(await_each(has_author(book.author) for book in result)),
description="One ore more authors of the resulting books do not exist."

)
async def books_in_category(category: str) -> Any:

"""Retrieve the books of the given category from the database."""

The full example is available at tests.example.books_in_category().

7

https://docs.python.org/3/glossary.html#term-coroutine
https://docs.python.org/3/glossary.html#term-coroutine
https://bugs.python.org/issue33447
https://pypi.org/project/asyncstdlib/

fastapi-icontract Documentation, Release 0.0.4

8 Chapter 4. Async

CHAPTER

FIVE

TRANSACTIONS

Fastapi-icontract is not aware of the transactions.

This is especially relevant for concurrent systems where multiple clients modify a shared resource (e.g., a database) at
the same time. If you are not careful, you can end up with quite a few time-of-check-time-of-use (TOCTOU) errors.

A possible approach to use transaction both in the contracts and the endpoint is to introduce a decorator on top of
fastapi-icontract decorators which will start a transaction and pass it down to the contracts and the function, and then
close it when the underlying call stack is executed.

For example:

from fastapi_icontract import require

@app.get("/books_in_category", response_model=List[Book])
@start_transaction # This passes ``txn`` to the underlying function and contracts
@require(

lambda txn, category: has_category(txn, category),
status_code=404,
description="The category must exist."

)
async def books_in_category(category: str) -> Any:

"""Retrieve the books of the given category from the database."""
...

How you implement the start_transaction depends on your particular system, and we present its usage here
just for illustration.

9

https://en.wikipedia.org/wiki/Time-of-check_to_time-of-use

fastapi-icontract Documentation, Release 0.0.4

10 Chapter 5. Transactions

CHAPTER

SIX

DOCUMENTING CONTRACTS IN OPENAPI

Fastapi-icontract provides the function fastapi_icontract.wrap_openapi_with_contracts() so that
you can include the contracts in the openapi.json endpoint of your FastAPI app.

The function is called once the app has been fully specified (see the full example):

fastapi_icontract.wrap_openapi_with_contracts(app=app)

The function will override the app.openapi method and cache the results for efficiency.

The modified schema is afterwards available at app.openapi_url (usually set to the default "/openapi.
json").

11

fastapi-icontract Documentation, Release 0.0.4

12 Chapter 6. Documenting Contracts in OpenAPI

CHAPTER

SEVEN

VISUALIZING CONTRACTS IN SWAGGER UI

Assuming you include contracts in OpenAPI schema (see Documenting Contracts in OpenAPI), they will be available
per each path as a x-contracts extension field. Unfortunately, Swagger UI does not pretty-prints extension fields,
so that the contracts end up barely readable as a long single-line string.

While you might inspect the OpenAPI specification, it is much more convenient to read contracts in a nice structured
layout. To that end, we developed swagger-ui-plugin-contracts, a JavaScript plugin that can be readily included in
Swagger UI.

There are a couple of options how you can include the plugin in the Swagger UI of your app.

7.1 Use set_up_route_for_docs_with_contracts_plugin

The most straightforward way is to replace the documentation route (i.e., the route corresponding to Swagger UI) is
rendered.

First, you need to explicitly tell your app to skip creating the documentation route at setup by setting
docs_url=None:

app = FastAPI(docs_url=None)

Fastapi-icontracts gives you the function set_up_route_for_docs_with_contracts_plugin() which
creates the documentation route with the contracts plugin included.

You need to call it explicitly once the app has been set up (see the full example):

fastapi_icontract.set_up_route_for_docs_with_contracts_plugin(
app=app, path="/docs")

From then on, Swagger UI with swagger-ui-plugin-contracts will be available at "/docs" path.

7.2 Specify Your Own Documentation Endpoint

fastapi_icontract.set_up_route_for_docs_with_contracts_plugin() does not really pro-
vide a way to customize the documentation endpoint.

For example, it does not allow you to specify a different URL from where swagger-ui-plugin-contracts should be
fetched, or add additional plugins. If you need such more involved customizations, you need to specify the documen-
tation endpoint yourself.

If you only need to change the URLs of the relevant files (e.g., to Swagger UI, swagger-ui-plugin-contracts, etc.), you
can use the function fastapi_icontract.swagger_ui.get_swagger_ui_html():

13

https://github.com/mristin/swagger-ui-plugin-contracts
https://github.com/mristin/swagger-ui-plugin-contracts
https://github.com/mristin/swagger-ui-plugin-contracts
https://github.com/mristin/swagger-ui-plugin-contracts

fastapi-icontract Documentation, Release 0.0.4

If you need to include additional Swagger UI plugins or customize otherwise the HTML code of the documentation,
you need to re-write your own version of fastapi_icontract.swagger_ui.get_swagger_ui_html().

14 Chapter 7. Visualizing Contracts in Swagger UI

CHAPTER

EIGHT

API

8.1 require

class fastapi_icontract.require
Decorate a FastAPI endpoint with a pre-condition.

__init__(condition: CallableT, status_code: int = 422, description: Optional[str] = None, enforced:
bool = True, undocument: bool = False)→ None

Initialize.

Parameters

• condition – pre-condition predicate.

The arguments of the pre-condition are expected to be a subset of the endpoint arguments.

It can either be a sync function, a lambda, an async function. If the condition returns a
coroutine, the coroutine will be awaited first, and then checked for truthiness.

• status_code – If the pre-condition is violated, the checker will raise a fastapi.
HTTPException. This status_code will be indicated in the exception.

• description – textual description of the pre-condition.

The description will be included in the exception if the pre-condition is violated.

• enforced – If set, the pre-condition is enforced.

Otherwise, the pre-condition is only added to the OpenAPI schema, but is not verified.
Usually, you enforce certain slow pre-conditions during testing and then disable them in
production. An unenforced pre-condition is however still useful for the client as a formal
documentation which is at least verified during testing.

• undocument – If set, the pre-condition is not documented in the OpenAPI schema.

__call__(func: CallableT)→ CallableT
Add the pre-condition to the checker of a FastAPI endpoint.

Parameters func – endpoint function to be wrapped

Returns wrapped endpoint

15

fastapi-icontract Documentation, Release 0.0.4

8.2 snapshot

class fastapi_icontract.snapshot
Add a snapshot to the checker of an FastAPI endpoint.

This will decorate the endpoint with a snapshot of argument values captured prior to the invocation.

A snapshot is defined by a capture function (usually a lambda) that accepts one or more arguments of the
function.

The captured values are supplied to post-conditions with the OLD argument of the condition.

__init__(capture: CallableT, name: str, enabled: bool = True, undocument: bool = False)→ None
Initialize.

Parameters

• capture – function to capture the snapshot accepting a one or more arguments of the
original function prior to the execution.

The capture can either be a lambda, a sync function or an async function. If capture
returns a coroutine, the coroutine will be first awaited before it is stored into the OLD
structure.

• name – name of the snapshot as will be stored in the OLD structure.

• enabled – The snapshot is applied only if enabled is set. Otherwise, the snapshot is
disabled and there is no run-time overhead.

Usually the snapshots are enabled and disabled together with their related post-conditions.

• undocument – If set, the snapshot is not documented in the OpenAPI schema.

__call__(func: CallableT)→ CallableT
Add the snapshot to the checker of a FastAPI endpoint func.

The function func is expected to be decorated with at least one postcondition before the snapshot.

Parameters func – function whose arguments we need to snapshot

Returns func as given in the input

8.3 ensure

class fastapi_icontract.ensure
Decorate a FastAPI endpoint with a post-condition.

__init__(condition: CallableT, status_code: int = 500, description: Optional[str] = None, enforced:
bool = True, undocument: bool = False)→ None

Initialize.

Parameters

• condition – post-condition predicate.

The arguments of the post-condition are expected to be a subset of the endpoint arguments.

It can either be a sync function, a lambda, an async function. If the condition returns a
coroutine, the coroutine will be awaited first, and then checked for truthiness.

• status_code – If the post-condition is violated, the checker will raise a fastapi.
HTTPException. This status_code will be indicated in the exception.

16 Chapter 8. API

fastapi-icontract Documentation, Release 0.0.4

• description – textual description of the post-condition.

The description will be included in the exception if the post-condition is violated.

• enforced – If set, the post-condition is enforced.

Otherwise, the post-condition is only added to the OpenAPI schema, but is not verified.
Usually, you enforce post-conditions during testing and then disable them all in produc-
tion. An unenforced post-condition is however still useful for the client as a formal docu-
mentation which is at least verified during testing.

• undocument – If set, the post-condition is not documented in the OpenAPI schema.

__call__(func: CallableT)→ CallableT
Add the postcondition to the checker of a FastAPI endpoint.

If the endpoint has not been already wrapped with a checker, this will wrap it with a checker first.

Parameters func – endpoint function to be wrapped

Returns wrapped endpoint

8.4 wrap_openapi_with_contracts

fastapi_icontract.wrap_openapi_with_contracts(app: fastapi.applications.FastAPI) →
None

Wrap the openapi method of the app to include the contracts in the schema.

8.5 set_up_route_for_docs_with_contracts_plugin

fastapi_icontract.set_up_route_for_docs_with_contracts_plugin(app:
fastapi.applications.FastAPI,
path: str =
'/docs')→ None

Set up the route for Swagger UI with included plugin swagger-ui-plugin-contracts.

The path must not be set before. You must explicitly tell FastAPI to exclude it during initialization with:

app = FastAPI(docs_url=None)

8.4. wrap_openapi_with_contracts 17

fastapi-icontract Documentation, Release 0.0.4

8.6 get_swagger_ui_html

fastapi_icontract.swagger_ui.get_swagger_ui_html(*, openapi_url: str, title:
str, swagger_js_url: str =
'https://cdn.jsdelivr.net/npm/swagger-
ui-dist@3/swagger-ui-bundle.js',
swagger_css_url: str =
'https://cdn.jsdelivr.net/npm/swagger-
ui-dist@3/swagger-ui.css',
swagger_favicon_url: str =
'https://fastapi.tiangolo.com/img/favicon.png',
swagger_ui_plugin_contracts_url:
str = 'https://unpkg.com/swagger-
ui-plugin-contracts',
oauth2_redirect_url: Op-
tional[str] = None, init_oauth:
Optional[Dict[str, Any]] = None)→
starlette.responses.HTMLResponse

Generate the HTML for Swagger UI endpoint.

This is a patched version of the original fastapi.applications.get_swagger_ui_html which includes a separate
JavaScript code to display contracts in a pretty format.

18 Chapter 8. API

CHAPTER

NINE

EXAMPLE

We present here a full example to demonstrate how you can use fastapi-icontract.

19

fastapi-icontract Documentation, Release 0.0.4

20 Chapter 9. Example

CHAPTER

TEN

CONTRIBUTING

10.1 Coordinate First

Before you create a pull request, please create a new issue first to coordinate.

It might be that we are already working on the same or similar feature, but we haven’t made our work visible yet.

10.2 Create a Development Environment

We usually develop in a virtual environment. To create one, change to the root directory of the repository and invoke:

python -m venv venv

You need to activate it. On nix (Linux, Mac, *etc.):

source venv/bin/activate

and on Windows:

venv\Scripts\activate

10.3 Install Development Dependencies

Once you activated the virtual environment, you can install the development dependencies using pip:

pip3 install --editable .[dev]

The –editable option is necessary so that all the changes made to the repository are automatically reflected in the
virtual environment (see also this StackOverflow question).

21

https://github.com/mristin/fastapi-icontract/issues/new/choose
https://docs.python.org/3/tutorial/venv.html
https://pip.pypa.io/en/stable/reference/pip_install/#install-editable
https://stackoverflow.com/questions/35064426/when-would-the-e-editable-option-be-useful-with-pip-install

fastapi-icontract Documentation, Release 0.0.4

10.4 Pre-commit Checks

We provide a battery of pre-commit checks to make the code uniform and consistent across the code base.

We use black to format the code and use the default maximum line length of 88 characters.

The docstrings need to conform to PEP 257. We use Sphinx docstring format to mark special fields (such as function
arguments, return values etc.). Please annotate your function with type annotations instead of writing the types in the
docstring.

To run all pre-commit checks, run from the root directory:

python precommit.py

You can automatically re-format the code with:

python precommit.py --overwrite

Here is the full manual of the pre-commit script:

usage: precommit.py [-h] [--overwrite] [--select [...]] [--skip [...]]

Run pre-commit checks on the repository.

optional arguments:
-h, --help show this help message and exit
--overwrite Try to automatically fix the offending files (e.g., by re-

formatting).
--select [...] If set, only the selected steps are executed. This is

practical if some of the steps failed and you want to fix
them in isolation. The steps are given as a space-
separated list of: black mypy pylint pydocstyle test
doctest check-init-and-setup-coincide check-help-in-doc

--skip [...] If set, skips the specified steps. This is practical if
some of the steps passed and you want to fix the remainder
in isolation. The steps are given as a space-separated
list of: black mypy pylint pydocstyle test doctest check-
init-and-setup-coincide check-help-in-doc

The pre-commit script also runs as part of our continuous integration pipeline.

10.5 Write Commit Message

We follow Chris Beams’ guidelines on commit messages:

1) Separate subject from body with a blank line

2) Limit the subject line to 50 characters

3) Capitalize the subject line

4) Do not end the subject line with a period

5) Use the imperative mood in the subject line

6) Wrap the body at 72 characters

7) Use the body to explain what and why vs. how

22 Chapter 10. Contributing

https://pypi.org/project/black/
https://www.python.org/dev/peps/pep-0257/
https://sphinx-rtd-tutorial.readthedocs.io/en/latest/docstrings.html
https://chris.beams.io/posts/git-commit/

CHAPTER

ELEVEN

CHANGELOG

11.1 0.0.4

• Add support for Python 3.9 and 3.10 (#15)

• Include Python 3.6 and 3.7 in CI (#14)

• Fix code snippets in README.rst (#9)

11.2 0.0.3

• Add FastAPI classifier in setup.py (#10)

• Extend message on snapshot missing post-conditions (#7)

11.3 0.0.2

• Fix the teaser code in Readme (#4)

11.4 0.0.1

• This is the first, kick-off version.

23

fastapi-icontract Documentation, Release 0.0.4

24 Chapter 11. Changelog

CHAPTER

TWELVE

INDICES AND TABLES

• genindex

• modindex

• search

25

fastapi-icontract Documentation, Release 0.0.4

26 Chapter 12. Indices and tables

INDEX

Symbols
__call__() (fastapi_icontract.ensure method), 17
__call__() (fastapi_icontract.require method), 15
__call__() (fastapi_icontract.snapshot method), 16
__init__() (fastapi_icontract.ensure method), 16
__init__() (fastapi_icontract.require method), 15
__init__() (fastapi_icontract.snapshot method), 16

E
ensure (class in fastapi_icontract), 16

G
get_swagger_ui_html() (in module

fastapi_icontract.swagger_ui), 18

R
require (class in fastapi_icontract), 15

S
set_up_route_for_docs_with_contracts_plugin()

(in module fastapi_icontract), 17
snapshot (class in fastapi_icontract), 16

W
wrap_openapi_with_contracts() (in module

fastapi_icontract), 17

27

	Introduction
	Pre-conditions
	Post-conditions
	Async
	Transactions
	Documenting Contracts in OpenAPI
	Visualizing Contracts in Swagger UI
	API
	Example
	Contributing
	Changelog
	Indices and tables
	Index

